News, Commentary & Opinion

The Journal of Holistic Performance
  • Articles
    • Journal
    • Blog
  • For Authors
  • Contact
  • Study

Is the Heart Foundation tick all it is cracked up to be?

14/8/2015

Comments

 
Picture
Post by Cliff Harvey


The  New Zealand Heart Foundation state that the “Tick Programme helps New Zealanders make healthier food choices” but evidence would suggest that many of the foods that sport the Heart Foundation’s Tick are exactly the type of foods that do not support making of better health. 

The Heart Foundation have only recently reinstituted a sugar requirement for the tick (and the new ‘two tick’ strategy) in spite of voluminous evidence that sugar intake is of primary importance for a range of health outcomes including those related to cardiovascular health. 

The guidelines still fail to adequately address glycaemic loads from non-sugar choices and for example, provide a highly favourable weighting to wholegrain foods including breads and other high carbohydrate, highly glycaemic and highly insulinergic foods, along with a continued preference for low-fat dairy despite there being no compelling evidence that low-fat dairy offers any benefit. In fact it has been demonstrated that (contrary to the authors hypothesis) lower fat varieties of milk products are associated with weight gain but full-fat dairy is not (Berkey, Rockett, Willett, & Colditz, 2005), and amongst other evidence a recent review has concluded that recommendations to reduce dairy fat are in contrast to the available evidence (Kratz, Baars, & Guyenet, 2013).

Many of the guidelines (including for example that of low-fat dairy preference) are based on the a priori position that energy intake trumps other factors related to diet. At HPN we contend that this is not in fact the case. There are efficiencies and inefficiencies within any living system and thus a calorific argument based solely on laboratory calorimetry fails to take these into account. Feinman and Fein (2004) have noted that “’a calorie is a calorie’ violates the second law of thermodynamics” due to its relative inability to account for metabolic advantages (such as alterations in lipogenesis, lipolysis, protein accretion and catabolism) arising from various dietary strategies incorporating differing macronutrient contents. 

A reason for continuing to endorse a low-fat high-carbohydrate diet is based on the greater energy density of fats compared to carbohydrates. The Atwater factor for carbohydrate is 4 calories per gram compared to 9 calories per gram for fats. Thus avoiding fat equates to fewer calories per mouthful and therefore a greater likelihood of weight gain. Willet and Liebel (2002) concluded that "within the United States, a substantial decline in the percentage of energy from fat during the last two decades has corresponded with a massive increase in the prevalence of obesity. Diets high in fat do not appear to be the primary cause of the high prevalence of excess body fat in our society, and reductions in fat will not be a solution (p.1)." 

The failure of high-carbohydrate and low-fat diet recommendations is indicated by the consistent lowering of carbohydrate recommendations over the last 20 years. The World Health Organisation (WHO) published dietary guidelines in 1998 (World Health Organisation, 1998) suggesting a range of 55%-70% of calories come from carbohydrate, but a 2007 update suggests that there is little actual evidence for the lower threshold and suggesting this could be lowered to 50% of calories (Mann et al., 2007). Indeed Nutrient Reference Values (NRV) for New Zealand and Australia state that the diet should contain a only a minimum of 45% of its calories from carbohydrate (Dietitians Association of Australia, 2013).

In contrast to the recommendations favouring a high carbohydrate (and consequently low fat and low-moderate protein) high-protein, low-carbohydrate (HPLC) diets appear to enhance weight-loss and improve glycaemic control, with a greater loss of body-fat and reduced loss of lean body mass compared to high-carbohydrate diets. This is due to a number of factors that are yet to be fully elucidated including (but perhaps not limited to): increased satiety, increased thermogenesis, muscle sparing and enhanced glycaemic control (Farnsworth et al., 2003; Labayen, Diez, Gonzalez, Parra, & Martinez, 2002; Layman & Baum, 2004; Piatti et al., 1994). 

Noakes and others have demonstrated that there may be further nutritional benefits (aside from weight-loss which was demonstrated) resulting from higher protein diets—with greater fat loss in the obese exhibiting high triacylglycerol TAG)counts, reduced TAG and improved B12 status compared to higher carbohydrate diets (Noakes, Keogh, Foster, & Clifton, 2005). 

The positive effects of higher protein intake on anthropometry in particular can be explained due to several factors, including increased satiety and thermogenesis when compared to equivalent amounts of either carbohydrates or fat (Keller, 2011). There is also higher thermic effect of feeding (TEF) associated with protein ingestion as compared to either carbohydrate or fat (Johnston, Day, & Swan, 2002; Robinson et al., 1990; Westerterp, 2004) A higher protein intake is considered to be more satiating than the carbohydrate it is displacing. A 2004 review by Halton and Hu (2004) found there to be convincing evidence that a higher protein intake increases thermogenesis and satiety compared to diets of a lower protein content. 

Low carbohydrate, high fat diets (often with low-to-moderate protein) likewise have demonstrated sufficient evidence to be considered a therapeutic option for the primary and adjunctive treatment of: fatty liver disease (Tendler et al., 2007); type 1 diabetes (Nielsen, Gando, Joensson, & Paulsson, 2012); type 2 diabetes (W. Yancy, Foy, Chalecki, Vernon, & Westman, 2005); cancer (Fine et al., 2012); and cognitive impairment (Krikorian et al., 2012).  

LCHF diets are also likely to be superior to low fat diets for improving several markers of cardiovascular health (Ebbeling et al., 2012; McAuley et al., 2006; Shai et al., 2008) with the possible exception of low density lipoprotein (LDL). However  the HDL:triglyceride ratio appears to be more favourably impacted with an LCHF diet in comparison with a higher carbohydrate diet (Sikaris, 2014), and lipid sub-fractions (including large particle LDL) may be increased favourably with an LCHF diet (Westman, Yancy Jr, Olsen, Dudley, & Guyton, 2006).

LCHF diets may provide ‘metabolic advantage’ of greater retention of lean mass, with greater fat-loss when compared to higher carbohydrate diets providing the same amount of calories. This has been demonstrated in short term studies since the 1960s (Benoit, Martin, & Watten, 1965). This does not contravene the laws of energy conservation (first law of thermodynamics) as there are inefficiencies and efficiencies within systems based on macronutrient inputs and the thermic effect of foods of varying macronutrient contents may provide for a net calorie loss (Buchholz & Schoeller, 2004; Feinman & Fine, 2004). 

These studies taken in totality suggest that a restriction of carbohydrate, irrespective of what it is replacing has the greatest effect on weight-loss and may positively affect cardiovascular health. 

Therefore the position that a higher-carbohydrate diet with low levels of fat is superior for health and thus foods with lower energy, lower fat and higher carbohydrates warrant the Tick is spurious. 

The Heart Foundation’s Tick Programme continues to heavily weight against foods containing higher levels of fat and in particular saturated fats despite a paucity of statistical evidence linking reduced fat or reduced saturated fat with cardiovascular disease end points. 

A Cochrane Review (Hooper et al., 2011) of RCTs on the effects of modifying fat intake and reduced fat intakes found no overall effect of the diets on total mortality (relative risk 0.98, 95% CI: 0.93 to 1.04) nor CVD mortality  (relative risk: 0.94, 95% CI 0.85 to 1.04). However a small relative reduction in cardiovascular events was noted (pooled RR: 0.86, 95% CI 0.77 to 0.96). Other meta-analyses find little statistical evidence for an effect of modified saturated fat intake on CVD mortality (Mente, de Koning, Shannon, & Anand, 2009; Siri-Tarino, Sun, Hu, & Krauss, 2010). 

Links between saturated fat intake and CVD end points are primarily found when in modified fat diets, where saturated fat is replaced with another macronutrient, typically either carbohydrate of another fat class (PUFA or MUFA). For example Jakobsen et al. (2009) demonstrated from cohort data a reduction in coronary disease events (pooled hazard ratio 0.69; 95% CI 0.59, 0.81) and coronary disease mortality (pooled hazard ratio 0.57; 95% CI 0.42 to 0.77) when saturated fat was replaced by polyunsaturated fats.

However no association was noted when SFAs were replaced with either MUFAs or carbohydrate, suggesting a positive role in cardio-protection from PUFA intake, and not an absolute effect from the ingestion of SFAs, and casting doubt on the common recommendation to replace saturated fat with carbohydrate and/or MUFAs. More specifically it is suggested that omega 3 PUFAs may be cardio-protective and that this may account for the benefits seen with PUFA for SFA substitution. The meta-analysis by Skeaff and Miller (2009) found that higher intakes of total fat and saturated fat were not significantly associated with CHD in cohort studies, but that various substitutions of PUFA for SFA had beneficial associations in randomised controlled trials (RCTs). However, the strength of results from RCT meta-analysis is highly dependent on selection criteria; inclusion of the Finnish Hospital study (Turpeinen, Pekkarinen, Miettinen, Elosuo, & Paavilainen, 1979), with its unusual “revolving door” methodology and confounding drug use, increases the likelihood of findings favourable to PUFA substitution, while adding the newly recovered data from the Sydney Diet Heart Study has the opposite effect (Ramsden et al., 2013).

Mozaffarian et al.(2010) in a meta-analysis of FA substitution RCTs which also failed to distinguish between omega 6 and omega 3 fatty acids stated that the method “cannot distinguish between potentially distinct benefits of increasing polyunsaturated fatty acids (PUFA) versus decreasing saturated fatty acids (SFA).”

RCTs conducted in the past to test this hypothesis did not produce conclusive results, but were suggestive of benefit from omega 3 fatty acids only (Ramsden et al., 2013). And clinical practice guidelines such as those published by the American College of Cardiology support the use of omega 3 fatty acid supplements for women (Mosca et al., 2004). 

A common criticism of higher fat-containing diets is the suggested linear correlation between LDL-cholesterol and ischemic heart disease mortality. However the effect of a distorted HDL-total cholesterol level appears to be a greater factor associated with IHD mortality by a factor of around 40% (Prospective Studies Collaboration, 2007) and diets lower in carbohydrate and higher in fat have consistently demonstrated improved HDL-total cholesterol ratios, along with reduced triacylglycerol levels (Foster et al., 2003; "A Randomized Trial Comparing a Very Low Carbohydrate Diet and a Calorie-Restricted Low Fat Diet on Body Weight and Cardiovascular Risk Factors in Healthy Women," 2003; Sharman et al., 2002; J. W. S. Yancy, Olsen, Guyton, Bakst, & Westman, 2004). More recently Westman and colleagues have evaluated differences in lipid sub-fractions between low-fat and low-carbohydrate, high-fat diets and found reductions in VLDL, medium and small size LDL, increases in large particle LDL although total LDL wasn’t reduced(Westman et al., 2006). A review of RCTs including 447 participants found statistically significant reductions in triglycerides and improved high-density lipoprotein cholesterol in those following LCHF vs LFHC (Total cholesterol and low-density lipoprotein cholesterol values were reduced more in those following LFHC) (Nordmann, Nordmann, Briel, & et al., 2006). Recently Chiu and colleagues have demonstrated no appreciable difference in insulin sensitivity or plasma lipids or lipoproteins related to either saturated fat intake or protein intake in a lower carbohydrate diet (Chiu et al., 2014).  

There is little evidence to suggest that saturated fat or total fat intake play a causal role in cardiovascular or other disease and the continued attention that these receive as a result of the existing Heart Tick criteria are providing for confusion in the public and this confusion is not warranted given the existing scientific evidence. Likewise a continued predilection to higher-carbohydrate food type, often of a highly processed and refined nature ignores the role of dysglycaemia, dysregulated insulin response and resultant metabolic disorder that is a co-factor in the development of cardiovascular disorders. 






References:

Benoit, F. L., Martin, R. L., & Watten, R. H. (1965). Changes in body composition during weight reduction in obesity. Balance studies comparing effects of fasting and a ketogenic diet. Annals of Internal Medicine, 63(4), 604-612. 

Berkey, C. S., Rockett, H. H., Willett, W. C., & Colditz, G. A. (2005). Milk, dairy fat, dietary calcium, and weight gain: A longitudinal study of adolescents. Archives of Pediatrics & Adolescent Medicine, 159(6), 543-550. doi: 10.1001/archpedi.159.6.543

Buchholz, A. C., & Schoeller, D. A. (2004). Is a calorie a calorie? The American journal of clinical nutrition, 79(5), 899S-906S. 

Chiu, S., Williams, P. T., Dawson, T., Bergman, R. N., Stefanovski, D., Watkins, S. M., & Krauss, R. M. (2014). Diets High in Protein or Saturated Fat Do Not Affect Insulin Sensitivity or Plasma Concentrations of Lipids and Lipoproteins in Overweight and Obese Adults. The Journal of Nutrition, 144(11), 1753-1759. doi: 10.3945/jn.114.197624

Dietitians Association of Australia. (2013). Nutrient Reference Values.   Retrieved 10/3/2015, from http://daa.asn.au/for-the-public/smart-eating-for-you/nutrition-a-z/nutrient-reference-values-nrvs/

Ebbeling, C. B., Swain, J. F., Feldman, H. A., Wong, W., Hachey, D. L., Garcia-Lago, E., & Ludwig, D. S. (2012). Effects of dietary composition on energy expenditure during weight-loss maintenance. JAMA, 307(24), 2627-2634. doi: 10.1001/jama.2012.6607

Farnsworth, E., Luscombe, N. D., Noakes, M., Wittert, G., Argyiou, E., & Clifton, P. M. (2003). Effect of a high-protein, energy-restricted diet on body composition, glycemic control, and lipid concentrations in overweight and obese hyperinsulinemic men and women. The American journal of clinical nutrition, 78(1), 31-39. 

Feinman, R. D., & Fine, E. J. (2004). "A calorie is a calorie" violates the second law of thermodynamics. Nutrition Journal, 3, 9-9. doi: 10.1186/1475-2891-3-9

Fine, E. J., Segal-Isaacson, C., Feinman, R. D., Herszkopf, S., Romano, M. C., Tomuta, N., . . . Sparano, J. A. (2012). Targeting insulin inhibition as a metabolic therapy in advanced cancer: A pilot safety and feasibility dietary trial in 10 patients. Nutrition. 

Foster, G. D., Wyatt, H. R., Hill, J. O., McGuckin, B. G., Brill, C., Mohammed, B. S., . . . Klein, S. (2003). A Randomized Trial of a Low-Carbohydrate Diet for Obesity. New England Journal of Medicine, 348(21), 2082-2090. doi: doi:10.1056/NEJMoa022207

Halton, T. L., & Hu, F. B. (2004). The Effects of High Protein Diets on Thermogenesis, Satiety and Weight Loss: A Critical Review. Journal of the American College of Nutrition, 23(5), 373-385. doi: 10.1080/07315724.2004.10719381

Hooper, L., Summerbell, C. D., Thompson, R., Sills, D., Roberts, F. G., Moore, H., & Davey Smith, G. (2011). Reduced or modified dietary fat for preventing cardiovascular disease. Cochrane Database of Systematic Reviews(7), CD002137. doi: 10.1002/14651858.CD002137.pub2

Jakobsen, M. U., O'Reilly, E. J., Heitmann, B. L., Pereira, M. A., Balter, K., Fraser, G. E., . . . Ascherio, A. (2009). Major types of dietary fat and risk of coronary heart disease: a pooled analysis of 11 cohort studies. Am J Clin Nutr, 89(5), 1425-1432. doi: 10.3945/ajcn.2008.27124

Johnston, C. S., Day, C. S., & Swan, P. D. (2002). Postprandial Thermogenesis Is Increased 100% on a High-Protein, Low-Fat Diet versus a High-Carbohydrate, Low-Fat Diet in Healthy, Young Women. Journal of the American College of Nutrition, 21(1), 55-61. doi: 10.1080/07315724.2002.10719194

Keller, U. (2011). Dietary proteins in obesity and in diabetes. International Journal for Vitamin and Nutrition Research, 81(23), 125-133. 

Kratz, M., Baars, T., & Guyenet, S. (2013). The relationship between high-fat dairy consumption and obesity, cardiovascular, and metabolic disease. European Journal of Nutrition, 52(1), 1-24. doi: 10.1007/s00394-012-0418-1

Krikorian, R., Shidler, M. D., Dangelo, K., Couch, S. C., Benoit, S. C., & Clegg, D. J. (2012). Dietary ketosis enhances memory in mild cognitive impairment. Neurobiology of Aging, 33(2), 425.e419-425.e427. 

Labayen, I., Diez, N., Gonzalez, A., Parra, D., & Martinez, J. (2002). Effects of protein vs. carbohydrate-rich diets on fuel utilisation in obese women during weight loss. Paper presented at the Forum of nutrition.

Layman, D. K., & Baum, J. I. (2004). Dietary Protein Impact on Glycemic Control during Weight Loss. The Journal of Nutrition, 134(4), 968S-973S. 

Mann, J., Cummings, J. H., Englyst, H. N., Key, T., Liu, S., Riccardi, G., . . . Wiseman, M. (2007). FAO//WHO Scientific Update on carbohydrates in human nutrition: conclusions. Eur J Clin Nutr, 61(S1), S132-S137. 

McAuley, K. A., Smith, K. J., Taylor, R. W., McLay, R. T., Williams, S. M., & Mann, J. I. (2006). Long-term effects of popular dietary approaches on weight loss and features of insulin resistance. International Journal of Obesity, 30(2), 342-349. doi: 10.1038/sj.ijo.0803075

Mente, A., de Koning, L., Shannon, H. S., & Anand, S. S. (2009). A systematic review of the evidence supporting a causal link between dietary factors and coronary heart disease. Arch Intern Med, 169(7), 659-669. doi: 10.1001/archinternmed.2009.38

Mosca, L., Appel, L. J., Benjamin, E. J., Berra, K., Chandra-Strobos, N., Fabunmi, R. P., . . . Williams, C. L. (2004). Evidence-based guidelines for cardiovascular disease prevention in women 1. Journal of the American College of Cardiology, 43(5), 900-921. doi: 10.1016/j.jacc.2004.02.001

Mozaffarian, D., Micha, R., & Wallace, S. (2010). Effects on coronary heart disease of increasing polyunsaturated fat in place of saturated fat: a systematic review and meta-analysis of randomized controlled trials. PLoS Medicine, 7(3), e1000252. doi: 10.1371/journal.pmed.1000252

Nielsen, J. V., Gando, C., Joensson, E., & Paulsson, C. (2012). Low carbohydrate diet in type 1 diabetes, long-term improvement and adherence: A clinical audit. Diabetology & metabolic syndrome, 4(1), 23. 

Noakes, M., Keogh, J. B., Foster, P. R., & Clifton, P. M. (2005). Effect of an energy-restricted, high-protein, low-fat diet relative to a conventional high-carbohydrate, low-fat diet on weight loss, body composition, nutritional status, and markers of cardiovascular health in obese women. The American journal of clinical nutrition, 81(6), 1298-1306. 

Nordmann, A. J., Nordmann, A., Briel, M., & et al. (2006). Effects of low-carbohydrate vs low-fat diets on weight loss and cardiovascular risk factors: A meta-analysis of randomized controlled trials. Archives of Internal Medicine, 166(3), 285-293. doi: 10.1001/archinte.166.3.285

Piatti, P. M., Monti, L. D., Magni, F., Fermo, I., Baruffaldi, L., Nasser, R., . . . Pozza, G. (1994). Hypocaloric high-protein diet improves glucose oxidation and spares lean body mass: Comparison to hypocaloric high-carbohydrate diet. Metabolism, 43(12), 1481-1487. doi: http://dx.doi.org/10.1016/0026-0495(94)90005-1

Prospective Studies Collaboration. (2007). Blood cholesterol and vascular mortality by age, sex, and blood pressure: a meta-analysis of individual data from 61 prospective studies with 55 000 vascular deaths. The Lancet, 370(9602), 1829-1839. 

Ramsden, C. E., Zamora, D., Leelarthaepin, B., Majchrzak-Hong, S. F., Faurot, K. R., Suchindran, C. M., . . . Hibbeln, J. R. (2013). Use of dietary linoleic acid for secondary prevention of coronary heart disease and death: evaluation of recovered data from the Sydney Diet Heart Study and updated meta-analysis. British Medical Journal, 346. doi: 10.1136/bmj.e8707

A Randomized Trial Comparing a Very Low Carbohydrate Diet and a Calorie-Restricted Low Fat Diet on Body Weight and Cardiovascular Risk Factors in Healthy Women. (2003). The Journal of Clinical Endocrinology & Metabolism, 88(4), 1617-1623. doi: doi:10.1210/jc.2002-021480

Robinson, S. M., Jaccard, C., Persaud, C., Jackson, A. A., Jequier, E., & Schutz, Y. (1990). Protein turnover and thermogenesis in response to high-protein and high-carbohydrate feeding in men. The American journal of clinical nutrition, 52(1), 72-80. 

Shai, I., Schwarzfuchs, D., Henkin, Y., Shahar, D. R., Witkow, S., Greenberg, I., . . . Stampfer, M. J. (2008). Weight loss with a low-carbohydrate, mediterranean, or low-fat diet. New England Journal of Medicine, 359(3), 229-241. doi: doi:10.1056/NEJMoa0708681

Sharman, M. J., Kraemer, W. J., Love, D. M., Avery, N. G., Gómez, A. L., Scheett, T. P., & Volek, J. S. (2002). A Ketogenic Diet Favorably Affects Serum Biomarkers for Cardiovascular Disease in Normal-Weight Men. The Journal of Nutrition, 132(7), 1879-1885. 

Sikaris, K. (2014). Cholesterol vs fat vs glucose. Paper presented at the The why and how of low carb eating, Auckland. 

Siri-Tarino, P. W., Sun, Q., Hu, F. B., & Krauss, R. M. (2010). Meta-analysis of prospective cohort studies evaluating the association of saturated fat with cardiovascular disease. The American journal of clinical nutrition, 91(3), 535-546. doi: 10.3945/ajcn.2009.27725

Skeaff, C. M., & Miller, J. (2009). Dietary fat and coronary heart disease: summary of evidence from prospective cohort and randomised controlled trials. Annals of Nutrition & Metabolism, 55(1-3), 173-201. doi: 10.1159/000229002

Tendler, D., Lin, S., Yancy, W. S., Jr., Mavropoulos, J., Sylvestre, P., Rockey, D. C., & Westman, E. C. (2007). The Effect of a Low-Carbohydrate, Ketogenic Diet on Nonalcoholic Fatty Liver Disease: A Pilot Study. Digestive Diseases and Sciences, 52(2), 589-593. doi: http://dx.doi.org/10.1007/s10620-006-9433-5

Turpeinen, O., Pekkarinen, M., Miettinen, M., Elosuo, R., & Paavilainen, E. (1979). Dietary prevention of coronary heart disease: the Finnish Mental Hospital Study. International Journal Of Epidemiology, 8(2), 99-118. 

Westerterp, K. R. (2004). Diet induced thermogenesis. Nutrition & metabolism, 1(1), 5. 

Westman, E. C., Yancy Jr, W. S., Olsen, M. K., Dudley, T., & Guyton, J. R. (2006). Effect of a low-carbohydrate, ketogenic diet program compared to a low-fat diet on fasting lipoprotein subclasses. International Journal of Cardiology, 110(2), 212-216. doi: http://dx.doi.org/10.1016/j.ijcard.2005.08.034

Willett, W. C., & Leibel, R. L. (2002). Dietary fat is not a major determinant of body fat. American Journal of Medicine, 113 Suppl 9B, 47S-59S. 

World Health Organisation. (1998). Carbohydrates in Human Nutrition: World Health Organisation or the Food and Agriculture Organisation of the United Nations.

Yancy, J. W. S., Olsen, M. K., Guyton, J. R., Bakst, R. P., & Westman, E. C. (2004). A Low-Carbohydrate, Ketogenic Diet versus a Low-Fat Diet To Treat Obesity and HyperlipidemiaA Randomized, Controlled Trial. Annals of Internal Medicine, 140(10), 769-777. doi: 10.7326/0003-4819-140-10-200405180-00006

Yancy, W., Foy, M., Chalecki, A., Vernon, M., & Westman, E. C. (2005). A low-carbohydrate, ketogenic diet to treat type 2 diabetes. Nutrition & metabolism, 2(1), 34. 

Comments

    RSS Feed

    Categories

    All
    Brain Health
    Carb Appropriate
    Clinical Nutrition
    Dairy
    Disease
    Exercise
    Fasting
    Genetics
    Gut Health
    Health
    Infographics
    Interviews
    Keto
    LCHF
    Lifestyle
    MCTs
    Meat
    Media
    Meet Our Advisors
    Meet Our Graduates
    Mushrooms
    Nutrition
    Paleo
    Pregnancy
    Public Health
    Research Review
    Skin Health
    Sleep
    Sugar
    Supplements
    Time Rich Practice
    Women's Health

    Archives

    September 2020
    June 2020
    May 2020
    March 2020
    March 2019
    May 2018
    April 2018
    March 2018
    February 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    July 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    January 2017
    December 2016
    November 2016
    October 2016
    September 2016
    August 2016
    July 2016
    June 2016
    May 2016
    April 2016
    March 2016
    February 2016
    January 2016
    December 2015
    November 2015
    October 2015
    September 2015
    August 2015
    July 2015
    June 2015
    May 2015
    April 2015
    March 2015
    February 2015
    December 2014
    November 2014
    October 2014
    September 2014
    August 2014
    July 2014
    June 2014
    May 2014
    April 2014
    March 2014
    February 2014
    December 2013
    February 2013
    January 2013


Sign up for articles and nutrition news



Donate

© 2020 Holistic Performance Limited
Photos used under Creative Commons from marcoverch, wuestenigel, Rawpixel Ltd, wuestenigel, Rinet IT, Infinity Studio, Herbert Guedes, Brett Jordan
  • Articles
    • Journal
    • Blog
  • For Authors
  • Contact
  • Study